skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Robin, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Malele-Kolisa, Yolanda (Ed.)
    Discipline-based education research—a field of research that investigates teaching and learning within STEM disciplines—has emerged over the last few decades to improve the quality of STEM education worldwide. Simple qualitative questions concerning the career backgrounds and motivations of the individuals who conduct this research have yet to be explored. Here, we surveyed and interviewed discipline-based education researchers about their career trajectories and motivations to pursue this field of research. We focused specifically on recruiting biology education research faculty members at colleges and universities. We used the Social Influence Model and Social Cognitive Career Theory to develop and analyze survey and semi-structured interview questions. Findings revealed participant career paths all began with disciplinary undergraduate and graduate-level biology education. We noticed participants began conducting biology education research due to theirvaluesandpersonal interests, while additionally being swayed bycontextual factors. Specifically, participantsvaluedbiology education research because it allowed them to make a difference in the world and provided them with a community open to change and collaboration. Biology education research allowed them to explore theirinterestsin teaching and evidence-based approaches to education. Thesevaluesandinterestswere impacted bycontextual factors, including discoveries of opportunities, positive (or negative) experiences with mentorship, exposure to evidence-based teaching literature, considerations of salary and job security, and experiences with gender-based discrimination. Our results underscore the importance of harnessing individual values and interests—especially those centered on evidence-based teaching practices and making a difference in the world—while fostering a positive and supportive academic environment. This research reveals pathways toward discipline-based education research careers. Additionally, this research can inform the development of graduate programs and funding opportunities. 
    more » « less
  2. Despite broad consensus that highlighting counter-stereotypical scientist role models in educational materials promotes equity and success, the specific elements that make these materials effective remain untested. Are pictures of counter-stereotypical scientists enough to communicate to students that scientists come from a variety of backgrounds, or is additional information required? To parse the effects of including visual depictions and humanizing information about scientists featured in biology course materials, we distributed three randomized versions of assignments over several academic terms across 36 undergraduate institutions (n> 3700 students). We found that including humanizing information about scientists was key to increasing student engagement with the biology course materials. The positive effect of humanizing information was especially important for students who related to the scientists. Structural equation modelling revealed the extent to which students related to scientists mediated the positive effect of humanizing descriptions on student engagement. Furthermore, our results were strongest among students who shared one or more excluded identity(s) with the featured scientists. Our findings underscore the importance of providing students with examples of humanized and relatable scientists in classrooms, rather than simply adding a photo to increase representation. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Sharp, Starlette (Ed.)
    Featuring a diversity of scientists within curriculum provides opportunities for students to relate to them. We manipulated the amount and type of information students received about scientists. We found including personal, humanizing information increased the extent to which students related to them, with implications for curriculum development. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Eddy, Sarah L (Ed.)
    Racial biases, which harm marginalized and excluded communities, may be combatted by clarifying misconceptions about race during biology lessons. We developed a human genetics laboratory activity that challenges the misconception that race is biological (biological essentialism). We assessed the relationship between this activity and student outcomes using a survey of students’ attitudes about biological essentialism and color-evasive ideology and a concept inventory about phylogeny and human diversity. Students in the human genetics laboratory activity showed a significant decrease in their acceptance of biological essentialism compared with a control group, but did not show changes in color-evasive ideology. Students in both groups exhibited increased knowledge in both areas of the concept inventory, but the gains were larger in the human genetics laboratory. In the second iteration of this activity, we found that only white students’ decreases in biological essentialist beliefs were significant and the activity failed to decrease color-evasive ideologies for all students. Concept inventory gains were similar and significant for both white and non-white students in this iteration. Our findings underscore the effectiveness of addressing misconceptions about the biological origins of race and encourage more research on ways to effectively change damaging student attitudes about race in undergraduate genetics education. 
    more » « less
  5. Luanna, Prevost (Ed.)
    In this essay, we review how counter-stereotypical scientists have been featured in life science courses and discuss the benefits and costs of developing and interacting with these materials from the perspectives of three groups: students, instructors, and the featured scientists. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  6. Sills, Jennifer (Ed.)
  7. While much has changed in the seven years since the 2016 start of our NSF S-STEM Program, the WVU Academy of Engineering Success (AcES), the goal to increase the number of graduating engineers and contribute to the diversification of the engineering workforce has remained constant [1], [2]. AcES has endeavored to attract, support, and retain through graduation talented, but underprepared (non-calculus-ready) first-time, full-time engineering and computing undergraduate students from underrepresented populations by implementing established, research-based student success and retention strategies. During the seven (7) years of NSF funding, this program has served 71 students and supported 28 students with renewable S-STEM scholarships. Past research used surveys and individual and focus group interviews to measure AcES scholars' feelings of institutional inclusion, engineering self-efficacy and identity, and assessment of their own development of academic and professional success skills [1], [2]. Results supported the Kruger-Dunning Effect, "a cognitive bias in which unskilled people do not recognize their incompetence in specific areas and often overestimate their abilities" [3], [4], [5]. Specifically, students who did not retain to the second year tended to enter college with unrealistic expectations regarding: (1) the time and effort required to succeed in a challenging major and (2) their ability to succeed with little effort. Students tended to underestimate the challenges and overestimate their ability to meet the challenges. [2], [3], [5]. Instead of focusing on those who left the program, this work focuses on AcES scholars who have completed or nearly completed an engineering or computing degree even through the additional complications and challenges presented by the COVID-19 pandemic. From these successful graduates, we hope to learn what elements of the AcES program were the most impactful to and supportive of their journey. The lessons learned are shared to inform other, future engineering education programs. 
    more » « less
  8. This paper describes the evolution of the NSF S-STEM "The Academy of Engineering Success (AcES)" program, which started in 2012 at West Virginia University (WVU), a large, mid-Atlantic, R1 institution, and received NSF S-STEM funding beginning in 2016 and corporate sponsorship beginning in 2021. The program was designed around research-based strategies to support and retain talented, but underprepared (non-calculus-ready) and underrepresented first-time, full-time engineering undergraduate students with the intention of contributing to the diversification of the engineering workforce by increasing the number of graduating engineers [1], [2]. This program has served over 100 students and provided financial support to 28 students through renewable NSF S-STEM scholarships. Based on the results of surveys, individual and focus group interviews, and student feedback, past research has focused on AcES participants' feelings of institutional inclusion, engineering self-efficacy and identity, and their assessment of their own development of academic and professional success skills [1], [2]. Past studies have reported support for the Kruger-Dunning Effect, "a cognitive bias in which unskilled people do not recognize their incompetence in specific areas and often overestimate their abilities" [3], [4], [5]. Specifically, the students who ultimately left engineering before their second year tended to enter college with unrealistic expectations of the difficulty of the major, an underestimate of the time and effort demands needed to be successful, and an overestimate of their ability to succeed with little effort [2], [3], [5]. This paper focuses on the evolution of the program throughout several time periods, the lessons learned, and the insight gained regarding the most positively impactful and supportive programmatic elements. These insights come from feedback from students who have completed or nearly completed their engineering degree and have persisted through the challenges of an engineering education, even with the additional complications and challenges of COVID. Additional observations are made by the program leaders. These insights are shared with the engineering educational community to inform other, future programs. 
    more » « less